试题
题目:
如图,在梯形ABCD中,AD∥BC,AB=DC,点E、F、G分别在边AB,BC,CD上,且AE=GF=GC.
求证:四边形AEFG是平行四边形.
答案
证明:∵在梯形ABCD中,AD∥BC,AB=DC,
∴∠B=∠C,
∵GF=GC,
∴∠GFC=∠C,
∴AB∥GF,
又∵AE=GF,
∴四边形AEFG是平行四边形.
证明:∵在梯形ABCD中,AD∥BC,AB=DC,
∴∠B=∠C,
∵GF=GC,
∴∠GFC=∠C,
∴AB∥GF,
又∵AE=GF,
∴四边形AEFG是平行四边形.
考点梳理
考点
分析
点评
专题
梯形;平行四边形的判定.
根据等腰梯形同一底边上的两底角相等可得∠B=∠C,再根据等边对等角的性质得到∠C=∠GFC,所以∠B=∠GFC,然后根据同位角相等,两直线平行得到AB∥GF,又AE=GF,根据有一组对边平行且相等的四边形是平行四边形即可证明;
本题考查了梯形及平行四边形的判定,难度一般,注意数形结合,把已知条件与所求结论联系起来是解题的关键.
证明题.
找相似题
(2012·无锡)如图,梯形ABCD中,AD∥BC,AD=3,AB=5,BC=9,CD的垂直平分线交BC于E,连接DE,则四边
形ABED的周长等于( )
梯形ABCD四条边的长度分别为1cm,2cm,3cm,4cm,则梯形的面积为
10
2
3
cm
10
2
3
cm
.
(2012·宿迁模拟)如图,∠AOB=45°,过OA上到点O的距离分别为1,3,5,7,9,11…的点作OA的垂线与OB相交,得到并标出一组黑色梯形,它们的面积分别为S
1
,S
2
,S
3
,S
4
…则第一个黑色梯形的面积S
1
=
4
4
;观察图中的规律,第n(n为正整数)个黑色梯形的面积S
n
=
8n-4
8n-4
.
(2009·攀枝花二模)如图,已知A,B两点是反比例函数y=
4
x
(x>0)的图象上任意两点,过A,B两点分别作y轴的垂线,垂足分别为C,D,连接AB,AO,BO,梯形ABDC的面积为5,则△AOB的面积为
5
5
.
如图,已知AB∥DC,AE⊥DC,AE=12,BD=15,AC=20.则梯形ABCD的面积为
150
150
.