试题
题目:
在梯形ABCD中,两底AB=14cm,CD=6cm,两底角∠A=30°,∠B=60°,则腰BC的长为( )
A.8cm
B.6cm
C.4cm
D.3cm
答案
C
解:延长两腰交于点E
在直角三角形ABE中,
∵∠A=30°,AB=14
∴BE=7
在直角三角形CDE中
∵∠CDE=30°,CD=6
∴CE=3
∴BC=BE-CE=7-3=4
故选C.
考点梳理
考点
分析
点评
梯形.
延长两腰交于点E,则得到直角三角形ABE和直角三角形CDE,利用三角函数即可求得BE,CE的长,则BC的长就不难得到了.
注意梯形中常见的辅助线之一:延长两腰.此题中构造了两个30°的等腰直角三角形,根据30°所对的直角边是斜边的一半进行计算.
找相似题
(2012·无锡)如图,梯形ABCD中,AD∥BC,AD=3,AB=5,BC=9,CD的垂直平分线交BC于E,连接DE,则四边
形ABED的周长等于( )
梯形ABCD四条边的长度分别为1cm,2cm,3cm,4cm,则梯形的面积为
10
2
3
cm
10
2
3
cm
.
(2012·宿迁模拟)如图,∠AOB=45°,过OA上到点O的距离分别为1,3,5,7,9,11…的点作OA的垂线与OB相交,得到并标出一组黑色梯形,它们的面积分别为S
1
,S
2
,S
3
,S
4
…则第一个黑色梯形的面积S
1
=
4
4
;观察图中的规律,第n(n为正整数)个黑色梯形的面积S
n
=
8n-4
8n-4
.
(2009·攀枝花二模)如图,已知A,B两点是反比例函数y=
4
x
(x>0)的图象上任意两点,过A,B两点分别作y轴的垂线,垂足分别为C,D,连接AB,AO,BO,梯形ABDC的面积为5,则△AOB的面积为
5
5
.
如图,已知AB∥DC,AE⊥DC,AE=12,BD=15,AC=20.则梯形ABCD的面积为
150
150
.