试题
题目:
(2011·台州)在梯形ABCD中,AD∥BC,∠ABC=90°,对角线AC、BD相交于点O.下列条件中,不能判断对角线互相垂直的是( )
A.∠1=∠4
B.∠1=∠3
C.∠2=∠3
D.OB
2
+OC
2
=BC
2
答案
B
解:A、若∠1=∠4,由∠4+∠2=90°,则∠1+∠2=90°,故本选项符合题意.
B、∠1=∠3得不出∠1+∠2=90°,不符合题意,故本选项错误;
C、∠2=∠3,则∠1+∠2=∠1+∠3=90°,故本选项正确.
D、根据勾股定理可得,此选项符合题意,故本选项正确.
故选B.
考点梳理
考点
分析
点评
梯形;勾股定理的逆定理.
所给的关于角的条件,只要能得出∠1+∠2=90°的均满足题意,另外D选项运用勾股定理即可作出判断.
本题考查梯形及勾股定理的知识,难度一般,关键是结合图形得出对角线垂直的条件,然后结合选项进行判断.
找相似题
(2012·无锡)如图,梯形ABCD中,AD∥BC,AD=3,AB=5,BC=9,CD的垂直平分线交BC于E,连接DE,则四边
形ABED的周长等于( )
梯形ABCD四条边的长度分别为1cm,2cm,3cm,4cm,则梯形的面积为
10
2
3
cm
10
2
3
cm
.
(2012·宿迁模拟)如图,∠AOB=45°,过OA上到点O的距离分别为1,3,5,7,9,11…的点作OA的垂线与OB相交,得到并标出一组黑色梯形,它们的面积分别为S
1
,S
2
,S
3
,S
4
…则第一个黑色梯形的面积S
1
=
4
4
;观察图中的规律,第n(n为正整数)个黑色梯形的面积S
n
=
8n-4
8n-4
.
(2009·攀枝花二模)如图,已知A,B两点是反比例函数y=
4
x
(x>0)的图象上任意两点,过A,B两点分别作y轴的垂线,垂足分别为C,D,连接AB,AO,BO,梯形ABDC的面积为5,则△AOB的面积为
5
5
.
如图,已知AB∥DC,AE⊥DC,AE=12,BD=15,AC=20.则梯形ABCD的面积为
150
150
.