试题
题目:
在梯形ABCD中,下底BC=10cm,腰CD=5.5cm,如果∠ABC=50°,∠ADC=100°,求上底AD的长.
答案
解:作DE∥AB.则四边形ABED是平行四边形.
∴∠ADE=∠B=50°,BE=AD
∵∠ADC=100°
∴∠EDC=50°
∵AD∥BC
∴∠DEC=∠ADE=50°
∴∠DEC=∠EDC
∴EC=CD=5.5cm.
∴BE=BC-EC=10-5.5=4.5cm.
∴AD=BE=4.5cm.
解:作DE∥AB.则四边形ABED是平行四边形.
∴∠ADE=∠B=50°,BE=AD
∵∠ADC=100°
∴∠EDC=50°
∵AD∥BC
∴∠DEC=∠ADE=50°
∴∠DEC=∠EDC
∴EC=CD=5.5cm.
∴BE=BC-EC=10-5.5=4.5cm.
∴AD=BE=4.5cm.
考点梳理
考点
分析
点评
梯形.
作DE∥AB.则四边形ABED是平行四边形,可以根据等角对等边证得△CDE是等腰三角形,即可求得EC的长,进而根据平行四边形的对边相等求得AD的长.
本题考查了梯形的计算,正确作出辅助线,把梯形转化成平行四边形与三角形的问题,关键是证得△CDE是等腰三角形.
找相似题
(2012·无锡)如图,梯形ABCD中,AD∥BC,AD=3,AB=5,BC=9,CD的垂直平分线交BC于E,连接DE,则四边
形ABED的周长等于( )
梯形ABCD四条边的长度分别为1cm,2cm,3cm,4cm,则梯形的面积为
10
2
3
cm
10
2
3
cm
.
(2012·宿迁模拟)如图,∠AOB=45°,过OA上到点O的距离分别为1,3,5,7,9,11…的点作OA的垂线与OB相交,得到并标出一组黑色梯形,它们的面积分别为S
1
,S
2
,S
3
,S
4
…则第一个黑色梯形的面积S
1
=
4
4
;观察图中的规律,第n(n为正整数)个黑色梯形的面积S
n
=
8n-4
8n-4
.
(2009·攀枝花二模)如图,已知A,B两点是反比例函数y=
4
x
(x>0)的图象上任意两点,过A,B两点分别作y轴的垂线,垂足分别为C,D,连接AB,AO,BO,梯形ABDC的面积为5,则△AOB的面积为
5
5
.
如图,已知AB∥DC,AE⊥DC,AE=12,BD=15,AC=20.则梯形ABCD的面积为
150
150
.