试题
题目:
如图,梯形ABCD中,AD∥BC,AD=CD,BC=AC,∠BAD=100°,则∠D=( )
A.140°
B.130°
C.110°
D.100°
答案
A
解:∵AD∥BC,
∴∠B+∠BAD=180°,
∵∠BAD=100°
∠B=80°,
∵AC=BC,
∴∠B=∠BAC=80°,
∴∠DAC=100°-80°=20°,
∵AD=DC,
∴∠DAC=∠DCA=20°,
∴∠D=180°-∠DAC-∠DCA=140°,
故选A.
考点梳理
考点
分析
点评
专题
梯形;平行线的性质;三角形内角和定理;等腰三角形的性质.
根据平行线的性质求出∠B,根据等腰三角形性质求出∠CAB,推出∠DAC,求出∠DCA,根据三角形的内角和定理求出即可.
本题主要考查对梯形,平行线的性质,等腰三角形的性质,三角形的内角和定理等知识点的理解和掌握,能熟练地运用性质进行计算是解此题的关键.
计算题.
找相似题
(2012·无锡)如图,梯形ABCD中,AD∥BC,AD=3,AB=5,BC=9,CD的垂直平分线交BC于E,连接DE,则四边
形ABED的周长等于( )
梯形ABCD四条边的长度分别为1cm,2cm,3cm,4cm,则梯形的面积为
10
2
3
cm
10
2
3
cm
.
(2012·宿迁模拟)如图,∠AOB=45°,过OA上到点O的距离分别为1,3,5,7,9,11…的点作OA的垂线与OB相交,得到并标出一组黑色梯形,它们的面积分别为S
1
,S
2
,S
3
,S
4
…则第一个黑色梯形的面积S
1
=
4
4
;观察图中的规律,第n(n为正整数)个黑色梯形的面积S
n
=
8n-4
8n-4
.
(2009·攀枝花二模)如图,已知A,B两点是反比例函数y=
4
x
(x>0)的图象上任意两点,过A,B两点分别作y轴的垂线,垂足分别为C,D,连接AB,AO,BO,梯形ABDC的面积为5,则△AOB的面积为
5
5
.
如图,已知AB∥DC,AE⊥DC,AE=12,BD=15,AC=20.则梯形ABCD的面积为
150
150
.