试题

题目:
青果学院一跨河桥,桥拱是圆弧形,跨度(AB)为16米,拱高(CD)为4米,求:
(1)桥拱半径
(2)若大雨过后,桥下河面宽度(EF)为12米,求水面涨高了多少?
答案
青果学院解:(1)∵拱桥的跨度AB=16m,拱高CD=4m,
∴AD=8m,
利用勾股定理可得:
AO2-(OC-CD)2=8×8,
解得OA=10(m).

(2)设河水上涨到EF位置(如上图所示),
这时EF=12m,EF∥AB,有OC⊥EF(垂足为M),
∴EM=
1
2
EF=6m,
连接OE,则有OE=10m,
OM=
OE2-EM2
=
102-62
=8(m)
OD=OC-CD=10-4=6(m),
OM-OD=8-6=2(m).
青果学院解:(1)∵拱桥的跨度AB=16m,拱高CD=4m,
∴AD=8m,
利用勾股定理可得:
AO2-(OC-CD)2=8×8,
解得OA=10(m).

(2)设河水上涨到EF位置(如上图所示),
这时EF=12m,EF∥AB,有OC⊥EF(垂足为M),
∴EM=
1
2
EF=6m,
连接OE,则有OE=10m,
OM=
OE2-EM2
=
102-62
=8(m)
OD=OC-CD=10-4=6(m),
OM-OD=8-6=2(m).
考点梳理
垂径定理的应用.
(1)利用直角三角形,根据勾股定理和垂径定理解答.
(2)已知到桥下水面宽AB为16m,即是已知圆的弦长,已知桥拱最高处离水面4m,就是已知弦心距,可以利用垂径定理转化为解直角三角形的问题.
此题主要考查了垂径定理的应用题,解题的关键是利用垂径定理和勾股定理求线段的长.
找相似题