试题
题目:
(2005·聊城)如图,圆心角∠AOB=120°,P是
AB
上任一点(不与A,B重合),点C在AP的延长线上,则∠BPC等于( )
A.45°
B.60°
C.75°
D.85°
答案
B
解:设点E是优弧AB(不与A、B重合)上的一点,
∵∠AOB=120°,
∴∠AEB=60°,
∴∠BPA=180°-∠AEB=180°-∠BPC,
∴∠BPC=∠AEB=60°.
故选B.
考点梳理
考点
分析
点评
圆内接四边形的性质.
设点E是优弧AB(不与A,B重合)上的一点,根据圆周角定理,可得∠AEB=60°,根据圆内接四边形对角互补知,∠BPA=180°-∠AEB=180°-∠BPC,即证∠BPC=∠AEB=60°.
本题考查了圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.和圆内接四边形对角互补的知识.
找相似题
(2013·德阳)如图,在⊙O上有定点C和动点P,位于直径AB的异侧,过点C作CP的垂线,与PB的延长线交于点Q,已知:⊙O半径为
5
2
,tan∠ABC=
3
4
,则CQ的最大值是( )
(1999·成都)如图,ABCD是⊙O的内接四边形,且∠ABC=115°,那么∠AOC等于( )
(1998·武汉)如图,已知圆周角∠BAD=50°,那么圆周角∠BCD的度数为( )
(1997·新疆)已知如图,∠EAD是圆内接四边形ABCD的一个外角,则( )
(1997·武汉)如图,四边形ABCD内接于圆,则下列结论中正确的是( )