试题
题目:
(2009·益阳)如图,在梯形ABCD中,AB∥CD,BD⊥AD,BC=CD,∠A=60°,CD=2cm.
(1)求∠CBD的度数;
(2)求下底AB的长.
答案
解:(1)∵∠A=60°,BD⊥AD
∴∠ABD=30°(2分)
又∵AB∥CD
∴∠CDB=∠ABD=30°(4分)
∵BC=CD
∴∠CBD=∠CDB=30°(5分)
(2)∵∠ABD=∠CBD=30°
∴∠ABC=60°=∠A(7分)
∴AD=BC=CD=2cm
∴AB=2AD=4cm.(9分)
解:(1)∵∠A=60°,BD⊥AD
∴∠ABD=30°(2分)
又∵AB∥CD
∴∠CDB=∠ABD=30°(4分)
∵BC=CD
∴∠CBD=∠CDB=30°(5分)
(2)∵∠ABD=∠CBD=30°
∴∠ABC=60°=∠A(7分)
∴AD=BC=CD=2cm
∴AB=2AD=4cm.(9分)
考点梳理
考点
分析
点评
梯形;等腰三角形的性质.
(1)求∠CBD的度数,根据BC=CD,得到∠CDB=∠ABD,根据AB∥CD,只要求出∠ABD的度数就可以.
(2)Rt△ABD中,∠ABD=30°,则AB=2AD.
本题主要考查了等腰三角形的性质,等边对等角.
找相似题
(2012·无锡)如图,梯形ABCD中,AD∥BC,AD=3,AB=5,BC=9,CD的垂直平分线交BC于E,连接DE,则四边
形ABED的周长等于( )
梯形ABCD四条边的长度分别为1cm,2cm,3cm,4cm,则梯形的面积为
10
2
3
cm
10
2
3
cm
.
(2012·宿迁模拟)如图,∠AOB=45°,过OA上到点O的距离分别为1,3,5,7,9,11…的点作OA的垂线与OB相交,得到并标出一组黑色梯形,它们的面积分别为S
1
,S
2
,S
3
,S
4
…则第一个黑色梯形的面积S
1
=
4
4
;观察图中的规律,第n(n为正整数)个黑色梯形的面积S
n
=
8n-4
8n-4
.
(2009·攀枝花二模)如图,已知A,B两点是反比例函数y=
4
x
(x>0)的图象上任意两点,过A,B两点分别作y轴的垂线,垂足分别为C,D,连接AB,AO,BO,梯形ABDC的面积为5,则△AOB的面积为
5
5
.
如图,已知AB∥DC,AE⊥DC,AE=12,BD=15,AC=20.则梯形ABCD的面积为
150
150
.