试题
题目:
如图,在梯形ABCD中,AD∥BC,E为CD的中点,连接AE并延长AE交BC的延长线于点F.
(1)求证:CF=AD;
(2)若AD=3,AB=8,当BC=
5
5
时,点B在线段AF的垂直平分线上.
答案
5
(1)证明:∵AD∥BC,
∴∠F=∠DAE.(1分)
又∵∠FEC=∠AED,
∴∠ECF=∠ADE,
在△FEC与△AED中,
∠FEC=∠AED
CE=DE
∠ECF=∠ADE
,
∴△FEC≌△AED,
∴CF=AD.
(2)解:当BC=5时,点B在线段AF的垂直平分线上,
其理由是:∵BC=5,AD=3,AB=8,
∴AB=BC+AD,
又∵CF=AD,BC+CF=BF,
∴AB=BF,
∴△ABF是等腰三角形,
故可得点B在AF的垂直平分线上.
考点梳理
考点
分析
点评
梯形;全等三角形的判定与性质;线段垂直平分线的性质.
(1)通过求证△FEC≌△AED来证明CF=AD;
(2)若点B在线段AF的垂直平分线上,则应有AB=BF,又AB=8,CF=AD=3,BC=BF-CF.
本题考查了梯形的知识,利用了:(1)梯形的性质,(2)全等三角形的判定和性质,(3)中垂线的性质,难度一般.
找相似题
(2012·无锡)如图,梯形ABCD中,AD∥BC,AD=3,AB=5,BC=9,CD的垂直平分线交BC于E,连接DE,则四边
形ABED的周长等于( )
梯形ABCD四条边的长度分别为1cm,2cm,3cm,4cm,则梯形的面积为
10
2
3
cm
10
2
3
cm
.
(2012·宿迁模拟)如图,∠AOB=45°,过OA上到点O的距离分别为1,3,5,7,9,11…的点作OA的垂线与OB相交,得到并标出一组黑色梯形,它们的面积分别为S
1
,S
2
,S
3
,S
4
…则第一个黑色梯形的面积S
1
=
4
4
;观察图中的规律,第n(n为正整数)个黑色梯形的面积S
n
=
8n-4
8n-4
.
(2009·攀枝花二模)如图,已知A,B两点是反比例函数y=
4
x
(x>0)的图象上任意两点,过A,B两点分别作y轴的垂线,垂足分别为C,D,连接AB,AO,BO,梯形ABDC的面积为5,则△AOB的面积为
5
5
.
如图,已知AB∥DC,AE⊥DC,AE=12,BD=15,AC=20.则梯形ABCD的面积为
150
150
.