试题
题目:
如图,已知梯形ABCD中,AD∥BC,CA平分∠BCD,AD=12,BC=22,CE=10,
(1)试说明:AB=DE,(2)求CD的长.
答案
解:(1)∵BC=22,CE=10,
∴BE=12,
又∵AD=12,
∴AD=BE,
∵AD∥BC,
∴四边形ABED是平行四边形,
∴AB=DE;
(2)∵CA平分∠BCD,
∴∠ACB=∠ACD,
又∵AD∥BC,
∴∠CAD=∠ACB,∠CAD=∠ACD,
即△ACD是等腰三角形,
所以DC=AD=12.
解:(1)∵BC=22,CE=10,
∴BE=12,
又∵AD=12,
∴AD=BE,
∵AD∥BC,
∴四边形ABED是平行四边形,
∴AB=DE;
(2)∵CA平分∠BCD,
∴∠ACB=∠ACD,
又∵AD∥BC,
∴∠CAD=∠ACB,∠CAD=∠ACD,
即△ACD是等腰三角形,
所以DC=AD=12.
考点梳理
考点
分析
点评
专题
梯形;等腰三角形的判定与性质;平行四边形的判定与性质.
(1)可通过证明四边形ABED是平行四边形,来证得AB=DE,因为AD=12,BC=22,CE=10,所以,BE=12,又AD∥BC,所以可证得AB=DE=12;
(2)CA平分∠BCD,所以,∠ACE=∠ACD,又AD∥BC,所以,∠CAD=∠ACD,即△ACD是等腰三角形,DC=AD=12.
本题考查了平行四边形、角平分线的有关知识及等腰三角形的判定,掌握有关知识并能熟练、综合运用是解答本题的关键.
计算题.
找相似题
(2012·无锡)如图,梯形ABCD中,AD∥BC,AD=3,AB=5,BC=9,CD的垂直平分线交BC于E,连接DE,则四边
形ABED的周长等于( )
梯形ABCD四条边的长度分别为1cm,2cm,3cm,4cm,则梯形的面积为
10
2
3
cm
10
2
3
cm
.
(2012·宿迁模拟)如图,∠AOB=45°,过OA上到点O的距离分别为1,3,5,7,9,11…的点作OA的垂线与OB相交,得到并标出一组黑色梯形,它们的面积分别为S
1
,S
2
,S
3
,S
4
…则第一个黑色梯形的面积S
1
=
4
4
;观察图中的规律,第n(n为正整数)个黑色梯形的面积S
n
=
8n-4
8n-4
.
(2009·攀枝花二模)如图,已知A,B两点是反比例函数y=
4
x
(x>0)的图象上任意两点,过A,B两点分别作y轴的垂线,垂足分别为C,D,连接AB,AO,BO,梯形ABDC的面积为5,则△AOB的面积为
5
5
.
如图,已知AB∥DC,AE⊥DC,AE=12,BD=15,AC=20.则梯形ABCD的面积为
150
150
.