试题

题目:
(2010·丰台区一模)已知:如图,梯形ABCD中,DC∥AB,AD=BC,对角线AC、BD交于点O,∠COD=60°,若CD=3,AB=8,求梯形ABCD的高.青果学院
答案
解:过点C作CE∥DB,交AB的延长线于点E
∴∠ACE=∠COD=60°青果学院
又∵DC∥AB,∴四边形DCEB为平行四边形
∴BD=CE,BE=DC=3,AE=AB+BE=8+3=11
又∵DC∥AB,AD=BC,
∴DB=AC=CE
∴△ACE为等边三角形
∴AC=AE=11,∠CAB=60°
过点C作CH⊥AE于点H.在Rt△ACH中,CH=AC·sin∠CAB=11×
3
2
=
11
3
2

∴梯形ABCD的高为
11
3
2

解:过点C作CE∥DB,交AB的延长线于点E
∴∠ACE=∠COD=60°青果学院
又∵DC∥AB,∴四边形DCEB为平行四边形
∴BD=CE,BE=DC=3,AE=AB+BE=8+3=11
又∵DC∥AB,AD=BC,
∴DB=AC=CE
∴△ACE为等边三角形
∴AC=AE=11,∠CAB=60°
过点C作CH⊥AE于点H.在Rt△ACH中,CH=AC·sin∠CAB=11×
3
2
=
11
3
2

∴梯形ABCD的高为
11
3
2
考点梳理
梯形.
过点C作CE∥DB,交AB的延长线于点E,过点C作CH⊥AE于点H,根据等腰梯形的性质可知,AC=BD,由CE∥DB,DC∥AB,可知四边形DCEB为平行四边形,CD=BE=3,又∠COD=60°,故∠ACE=60°,△ACE为等边三角形,边长为AB+BE=11,解Rt△ACH可求高CH.
本题考查了梯形的性质,解题的关键是平移一条对角线,两条对角线与上、下底的和构成三角形,再根据梯形的条件解这个三角形求高或者求梯形的面积.
找相似题