试题
题目:
如图所示,梯形ABCD中,AB∥CD,两对角线AC、BD交于0点,且BD⊥AD,已知BC=CD=7,则AB=
14
14
.
答案
14
解:过C作CE∥AD,
∵DC∥AB,
∴四边形ADCE是平行四边形,
∴AE=DC=7,
∵BD⊥AD,
∴∠ADB=90°,
∵AD∥BC,
∴∠EMB=∠ADB=90°,
∴CM⊥DB,
∵DC=BC,
∴△DCB是等腰三角形,
∴∠1=∠2,
∵DC∥AB,
∴∠1=∠3,
∴∠2=∠3,
∴EB=CB=7,
∴AB=7+7=14,
故答案为:14.
考点梳理
考点
分析
点评
梯形;等腰三角形的判定与性质.
首先过C作CE∥AD,可得四边形ADCE是平行四边形,进而得到AE=7,再证明CM⊥DB,根据等腰三角形的性质证明△ECB是等腰三角形,进而得到EB=CB=7.
此题主要考查了梯形的性质,以及等腰三角形的判定与性质,关键是掌握等腰三角形三线合一的性质.
找相似题
(2012·无锡)如图,梯形ABCD中,AD∥BC,AD=3,AB=5,BC=9,CD的垂直平分线交BC于E,连接DE,则四边
形ABED的周长等于( )
梯形ABCD四条边的长度分别为1cm,2cm,3cm,4cm,则梯形的面积为
10
2
3
cm
10
2
3
cm
.
(2012·宿迁模拟)如图,∠AOB=45°,过OA上到点O的距离分别为1,3,5,7,9,11…的点作OA的垂线与OB相交,得到并标出一组黑色梯形,它们的面积分别为S
1
,S
2
,S
3
,S
4
…则第一个黑色梯形的面积S
1
=
4
4
;观察图中的规律,第n(n为正整数)个黑色梯形的面积S
n
=
8n-4
8n-4
.
(2009·攀枝花二模)如图,已知A,B两点是反比例函数y=
4
x
(x>0)的图象上任意两点,过A,B两点分别作y轴的垂线,垂足分别为C,D,连接AB,AO,BO,梯形ABDC的面积为5,则△AOB的面积为
5
5
.
如图,已知AB∥DC,AE⊥DC,AE=12,BD=15,AC=20.则梯形ABCD的面积为
150
150
.