试题
题目:
如图,梯形ABCD中,AD∥BC,AB=CD,∠ABC=72°,DE∥AB,将△DCE沿DE翻折,得到△DC′E,则∠EDC′=
36
36
度.
答案
36
解:∵平行移动腰AB至DE,
∴DE=AB=CD,
∴∠C=∠DEC=∠B=72°,∠EDC=180°-2∠C=36°,
由折叠的性质知:∠EDC'=∠EDC'=36°.
故答案为:36°.
考点梳理
考点
分析
点评
专题
翻折变换(折叠问题);梯形.
由折叠易得∠EDC′=∠EDC,根据平行及等腰梯形的性质可得DE=DC,那么∠C=∠DEC=∠B=72°,根据三角形内角和定理可得∠EDC的度数,也就求得了∠EDC′的度数.
此题考查了翻折变换及梯形的知识,解答本题的关键是得出DE=AB=CD,求出∠EDC的度数,难度一般.
数形结合.
找相似题
(2012·无锡)如图,梯形ABCD中,AD∥BC,AD=3,AB=5,BC=9,CD的垂直平分线交BC于E,连接DE,则四边
形ABED的周长等于( )
梯形ABCD四条边的长度分别为1cm,2cm,3cm,4cm,则梯形的面积为
10
2
3
cm
10
2
3
cm
.
(2012·宿迁模拟)如图,∠AOB=45°,过OA上到点O的距离分别为1,3,5,7,9,11…的点作OA的垂线与OB相交,得到并标出一组黑色梯形,它们的面积分别为S
1
,S
2
,S
3
,S
4
…则第一个黑色梯形的面积S
1
=
4
4
;观察图中的规律,第n(n为正整数)个黑色梯形的面积S
n
=
8n-4
8n-4
.
(2009·攀枝花二模)如图,已知A,B两点是反比例函数y=
4
x
(x>0)的图象上任意两点,过A,B两点分别作y轴的垂线,垂足分别为C,D,连接AB,AO,BO,梯形ABDC的面积为5,则△AOB的面积为
5
5
.
如图,已知AB∥DC,AE⊥DC,AE=12,BD=15,AC=20.则梯形ABCD的面积为
150
150
.