试题

题目:
青果学院(2010·广州)如图,在等腰梯形ABCD中,AD∥BC、求证:∠A+∠C=180°.
答案
证明:∵梯形ABCD是等腰梯形,
∴∠B=∠C(等腰梯形同一底上的两个角相等)
又∵AD∥BC,
∴∠A+∠B=180°(两直线平行同旁内角互补)
∴∠A+∠C=180°(等量代换).
证明:∵梯形ABCD是等腰梯形,
∴∠B=∠C(等腰梯形同一底上的两个角相等)
又∵AD∥BC,
∴∠A+∠B=180°(两直线平行同旁内角互补)
∴∠A+∠C=180°(等量代换).
考点梳理
等腰梯形的性质.
由于AD∥BC,所以∠A+∠B=180°,要想说明∠A+∠C=180°,只需根据等腰梯形的两底角相等来说明∠B=∠C即可.
本题是一个简单的考查等腰梯形性质的解答题,属于基础题.
证明题.
找相似题