试题

题目:
青果学院(2013·杭州)如图,在等腰梯形ABCD中,AB∥DC,线段AG,BG分别交CD于点E,F,DE=CF.
求证:△GAB是等腰三角形.
答案
证明:∵在等腰梯形中ABCD中,AD=BC,
∴∠D=∠C,∠DAB=∠CBA,
在△ADE和△BCF中,
AD=BC
∠D=∠C
DE=CF

∴△ADE≌△BCF(SAS),
∴∠DAE=∠CBF,
∴∠GAB=∠GBA,
∴GA=GB,
即△GAB为等腰三角形.
证明:∵在等腰梯形中ABCD中,AD=BC,
∴∠D=∠C,∠DAB=∠CBA,
在△ADE和△BCF中,
AD=BC
∠D=∠C
DE=CF

∴△ADE≌△BCF(SAS),
∴∠DAE=∠CBF,
∴∠GAB=∠GBA,
∴GA=GB,
即△GAB为等腰三角形.
考点梳理
等腰梯形的性质;全等三角形的判定与性质;等腰三角形的判定.
由在等腰梯形ABCD中,AB∥DC,DE=CF,利用SAS,易证得△ADE≌△BCF,即可得∠DAE=∠CBF,则可得∠GAB=∠GBA,然后由等角对等边,证得:△GAB是等腰三角形.
此题考查了等腰梯形的性质、全等三角形的判定与性质以及等腰三角形的判定.此题难度不大,注意掌握数形结合思想的应用.
证明题.
找相似题