试题
题目:
(2004·太原)已知:如图,等腰梯形ABCD中,AD∥BC,BD平分∠ABC.
(1)求证:AB=AD;
(2)若AD=2,∠C=60°,求等腰梯形ABCD的周长.
答案
(1)证明:∵AD∥BC,
∴∠ADB=∠CBD.
∵BD平分∠ABC,
∴∠ABD=∠DBC.
∴∠ABD=∠ADB.
∴AB=AD.
(2)解:∵ABCD为等腰梯形,
∴∠ABC=∠C=60°.
∴∠DBC=30°.
∵AD=AB=DC=2,
∴BC=4.
∴梯形的周长=2+2+2+4=10.
(1)证明:∵AD∥BC,
∴∠ADB=∠CBD.
∵BD平分∠ABC,
∴∠ABD=∠DBC.
∴∠ABD=∠ADB.
∴AB=AD.
(2)解:∵ABCD为等腰梯形,
∴∠ABC=∠C=60°.
∴∠DBC=30°.
∵AD=AB=DC=2,
∴BC=4.
∴梯形的周长=2+2+2+4=10.
考点梳理
考点
分析
点评
专题
等腰梯形的性质.
因为AD∥BC,BD平分∠ABC所以∠ABD=∠DBC=∠ADB,所以AB=AD;由已知可得到BC=2AB,已证AB=AD,所以周长不难求得.
此题主要考查学生对等腰梯形的性质的理解及运用.
计算题;证明题.
找相似题
(2012·遂宁)如图,已知等腰梯形ABCD中,AD∥BC,∠B=60°,AD=2,BC=8,则此等腰梯形的周长为( )
(2011·湘潭)下列四边形中,对角线相等且互相垂直平分的是( )
(2011·武汉)如图.在梯形ABCD中,AB∥DC,AD=DC=CB,若∠ABD=25°,则∠BAD的大小是( )
(2011·乌鲁木齐)如图.梯形ABCD中,AD∥BC、AB=CD,AC丄BD于点O,∠BAC=60°,若BC=
6
,则此梯形的面积为( )
(2011·宁夏)等腰梯形的上底是2cm,腰长是4cm,一个底角是60°,则等腰梯形的下底是( )