试题
题目:
如图,等腰梯形ABCD中,AB∥CD,AB=2AD,梯形周长为40,对角线BD平分∠ABC,求梯形的腰长及两底边的长.
答案
解:∵四边形ABCD是等腰梯形,AB∥DC,
∴AD=BC,∠DBA=∠CDB,
又BD平分∠ABC,
∴∠CBD=∠DBA,
∴∠CDB=∠CBD,
∴CD=BC,
又AB=2AD,
AB+AD+CD+BC=40,
∴2AD+AD+AD+AD=40,
5AD=40,
AD=8,
∴CD=8,AB=16,
即梯形腰长为8,两底边长为8和16,
答:梯形的腰长是8,两底边的长分别是8,16.
解:∵四边形ABCD是等腰梯形,AB∥DC,
∴AD=BC,∠DBA=∠CDB,
又BD平分∠ABC,
∴∠CBD=∠DBA,
∴∠CDB=∠CBD,
∴CD=BC,
又AB=2AD,
AB+AD+CD+BC=40,
∴2AD+AD+AD+AD=40,
5AD=40,
AD=8,
∴CD=8,AB=16,
即梯形腰长为8,两底边长为8和16,
答:梯形的腰长是8,两底边的长分别是8,16.
考点梳理
考点
分析
点评
专题
等腰梯形的性质;平行线的性质;角平分线的性质;等腰三角形的判定与性质.
根据等腰梯形性质得到AD=BC,∠DBA=∠CDB,根据角平分线性质推出∠CDB=∠CBD,推出CD=BC,根据已知梯形的周长求出即可.
本题主要考查对等腰梯形的性质,平行线的性质,等腰三角形的性质,角平分线的性质等知识点的理解和掌握,能求出DC=BC是解此题的关键.
计算题.
找相似题
(2012·遂宁)如图,已知等腰梯形ABCD中,AD∥BC,∠B=60°,AD=2,BC=8,则此等腰梯形的周长为( )
(2011·湘潭)下列四边形中,对角线相等且互相垂直平分的是( )
(2011·武汉)如图.在梯形ABCD中,AB∥DC,AD=DC=CB,若∠ABD=25°,则∠BAD的大小是( )
(2011·乌鲁木齐)如图.梯形ABCD中,AD∥BC、AB=CD,AC丄BD于点O,∠BAC=60°,若BC=
6
,则此梯形的面积为( )
(2011·宁夏)等腰梯形的上底是2cm,腰长是4cm,一个底角是60°,则等腰梯形的下底是( )