试题
题目:
如图,等腰梯形ABCD中,AD∥BC,AB=DC=1,BD平分∠ABC,BD⊥CD,则AD+BC等于
3
3
.
答案
3
解:∵等腰梯形ABCD中,AD∥BC,
∴∠ADB=∠CBD,∠ABC=∠C,
∵BD平分∠ABC,
∴∠ABD=∠CBD,∠ABC=∠C=2∠CBD,
∴∠ABD=∠ADB,
∴AD=AB=1,
∵BD⊥CD,
∴∠CBD+∠C=90°,
∴∠CBD=30°,∠C=60°,
在Rt△BCD中,BC=2CD=2,
∴AD+BC=1+2=3.
故答案为:3.
考点梳理
考点
分析
点评
等腰梯形的性质.
由等腰梯形ABCD中,AD∥BC,BD平分∠ABC,BD⊥CD,易得△ABD是等腰三角形,△BCD是含30°角的直角三角形的性质,继而可求得AD与BC的长,则可求得答案.
此题考查了等腰梯形的性质、等腰三角形的判定与性质以及含30°角的直角三角形的性质.此题难度适中,注意掌握数形结合思想的应用.
找相似题
(2012·遂宁)如图,已知等腰梯形ABCD中,AD∥BC,∠B=60°,AD=2,BC=8,则此等腰梯形的周长为( )
(2011·湘潭)下列四边形中,对角线相等且互相垂直平分的是( )
(2011·武汉)如图.在梯形ABCD中,AB∥DC,AD=DC=CB,若∠ABD=25°,则∠BAD的大小是( )
(2011·乌鲁木齐)如图.梯形ABCD中,AD∥BC、AB=CD,AC丄BD于点O,∠BAC=60°,若BC=
6
,则此梯形的面积为( )
(2011·宁夏)等腰梯形的上底是2cm,腰长是4cm,一个底角是60°,则等腰梯形的下底是( )