答案
解:(1)由题意得,BA=AD(等量代换),∠BAE=∠ADF(等腰梯形的性质),
又∵AD=DC,DE=CF,
∴AD+DE=DC+CF,
∴AE=DF(等量代换),
∴△BAE≌△ADF(SAS),
∴BE=AF(对应边相等);
(2)∵∠DCB=60°,
∴∠BAE=120°,
由△BAE≌△ADF可得∠ABE=∠DAF,
故可得∠BPF=∠ABE+∠BAF=∠DAF+∠BAF=∠BAE=120°.
解:(1)由题意得,BA=AD(等量代换),∠BAE=∠ADF(等腰梯形的性质),
又∵AD=DC,DE=CF,
∴AD+DE=DC+CF,
∴AE=DF(等量代换),
∴△BAE≌△ADF(SAS),
∴BE=AF(对应边相等);
(2)∵∠DCB=60°,
∴∠BAE=120°,
由△BAE≌△ADF可得∠ABE=∠DAF,
故可得∠BPF=∠ABE+∠BAF=∠DAF+∠BAF=∠BAE=120°.