试题
题目:
(2005·河南)如图,梯形ABCD中,AD∥BC,AB=CD=AD=1,∠B=60°,直线MN为梯形ABCD的对称轴,P为MN上一动点,那么PC+PD的最小值为
3
3
.
答案
3
解:连接AC交直线MN于P点,P点即为所求.
∵直线MN为梯形ABCD的对称轴,
∴AP=DP,
∴当A、P、C三点位于一条直线时,PC+PD=AC,为最小值,
∵AD=DC=AB,AD∥BC,
∴∠DCB=∠B=60°,
∵AD∥BC,
∴∠ACB=∠DAC,
∵AD=CD,
∴∠DAC=∠DCA,
∴∠DAC=∠DCA=∠ACB
∵∠ACB+∠DCA=60°,
∴∠DAC=∠DCA=∠ACB=30°,
∴∠BAC=90°,
∵AB=1,∠B=60°
∴AC=tan60°×AB=
3
×1=
3
.
∴PC+PD的最小值为
3
.
考点梳理
考点
分析
点评
专题
等腰梯形的性质;轴对称-最短路线问题.
因为直线MN为梯形ABCD的对称轴,所以当A、P、C三点位于一条直线时,PC+PD有最小值.
此题主要考查了等腰梯形的性质、轴对称的性质,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.解题关键是分析何时PC+PD有最小值.
压轴题;动点型.
找相似题
(2012·遂宁)如图,已知等腰梯形ABCD中,AD∥BC,∠B=60°,AD=2,BC=8,则此等腰梯形的周长为( )
(2011·湘潭)下列四边形中,对角线相等且互相垂直平分的是( )
(2011·武汉)如图.在梯形ABCD中,AB∥DC,AD=DC=CB,若∠ABD=25°,则∠BAD的大小是( )
(2011·乌鲁木齐)如图.梯形ABCD中,AD∥BC、AB=CD,AC丄BD于点O,∠BAC=60°,若BC=
6
,则此梯形的面积为( )
(2011·宁夏)等腰梯形的上底是2cm,腰长是4cm,一个底角是60°,则等腰梯形的下底是( )