试题
题目:
已知:如图,梯形ABCD中,AD∥BC,AB=CD,点D与点E关于BC对称.
(1)四边形ABEC是平行四边形吗?为什么?
(2)若AB=AD=
1
2
BC,说明四边形ABEC为矩形.
答案
(1)答:四边形ABEC是平行四边形
证明:∵点D与点E关于BC对称
∴△BCD与△BEC关于BC轴对称
∴BD=BE,CD=CE
又∵AD∥BC,AB=CD
∴AC=BD
∴AC=BE,AB=CE
∴四边形ABEC是平行四边形
(2)证明:连接AE,交BC于M
∵平行四边形ABEC
∴AM=
1
2
AE,MC=
1
2
BC
又∵AB=AD=
1
2
BC
∴AD=MC
∵AD∥BC
∴四边形AMCD是平行四边形
又∵AD=AB,AB=CD
∴AD=DC
∴平行四边形AMCD是菱形
∴AM=MC,AE=BC
∴平行四边形ABEC是矩形
(1)答:四边形ABEC是平行四边形
证明:∵点D与点E关于BC对称
∴△BCD与△BEC关于BC轴对称
∴BD=BE,CD=CE
又∵AD∥BC,AB=CD
∴AC=BD
∴AC=BE,AB=CE
∴四边形ABEC是平行四边形
(2)证明:连接AE,交BC于M
∵平行四边形ABEC
∴AM=
1
2
AE,MC=
1
2
BC
又∵AB=AD=
1
2
BC
∴AD=MC
∵AD∥BC
∴四边形AMCD是平行四边形
又∵AD=AB,AB=CD
∴AD=DC
∴平行四边形AMCD是菱形
∴AM=MC,AE=BC
∴平行四边形ABEC是矩形
考点梳理
考点
分析
点评
矩形的判定;全等三角形的判定与性质;平行四边形的判定;梯形;等腰梯形的性质.
(1)根据点D与点E关于BC对称,得到△DBC≌△EBC,由等腰梯形的性质得到AB=EC,BE=AC,推出四边形ABEC是平行四边形;
(2)作辅助线,连接AE,再利用对角线相等的平行四边形是矩形.
本题考查的是平行四边形、矩形、菱形的判定方法.
找相似题
(2012·遂宁)如图,已知等腰梯形ABCD中,AD∥BC,∠B=60°,AD=2,BC=8,则此等腰梯形的周长为( )
(2011·湘潭)下列四边形中,对角线相等且互相垂直平分的是( )
(2011·武汉)如图.在梯形ABCD中,AB∥DC,AD=DC=CB,若∠ABD=25°,则∠BAD的大小是( )
(2011·乌鲁木齐)如图.梯形ABCD中,AD∥BC、AB=CD,AC丄BD于点O,∠BAC=60°,若BC=
6
,则此梯形的面积为( )
(2011·宁夏)等腰梯形的上底是2cm,腰长是4cm,一个底角是60°,则等腰梯形的下底是( )