试题
题目:
(2011·桂林)如图,等腰梯形ABCD中,AB∥DC,BE∥AD,梯形ABCD的周长为26,DE=4,则△BEC的周长为
18
18
.
答案
18
解:∵AB∥DC,BE∥AD,
∴四边形ADEB是平行四边形,
∴AD=BE,AB=DE,
∵四边形ABCD是等腰梯形,
∴AD=BC,
∵梯形ABCD的周长为26,
∴AD+CD+BC+AB=AD+DE+EC+BE+AB=BE+2DE+EC+BC=26,
∵DE=4,
∴BE+EC+BC=18.
故答案为:18.
考点梳理
考点
分析
点评
等腰梯形的性质;平行四边形的判定与性质.
由AB∥DC,BE∥AD,即可证得四边形ADEB是平行四边形,则可得AD=BE,AB=DE,又由梯形ABCD的周长为26,DE=4,即可求得△BEC的周长.
此题考查了等腰梯形的性质与平行四边形的判定与性质.此题难度不大,解题的关键是整体思想与数形结合思想的应用.
找相似题
(2012·遂宁)如图,已知等腰梯形ABCD中,AD∥BC,∠B=60°,AD=2,BC=8,则此等腰梯形的周长为( )
(2011·湘潭)下列四边形中,对角线相等且互相垂直平分的是( )
(2011·武汉)如图.在梯形ABCD中,AB∥DC,AD=DC=CB,若∠ABD=25°,则∠BAD的大小是( )
(2011·乌鲁木齐)如图.梯形ABCD中,AD∥BC、AB=CD,AC丄BD于点O,∠BAC=60°,若BC=
6
,则此梯形的面积为( )
(2011·宁夏)等腰梯形的上底是2cm,腰长是4cm,一个底角是60°,则等腰梯形的下底是( )