试题
题目:
已知:如图,等腰梯形ABCD中,AB∥CD,对角线AC⊥BD于O,BC=13
2
,如果AB=a,CD=b,a+b=34
求:a、b的值.
答案
解:过C作CE∥DB交AB的延长线于E,作CF⊥AE
∵BD⊥AC
∴CE⊥AC(2分)
∵ABCD是等腰梯形
∴AC=BD
∵AB∥CD
∴DBEC是平行四边形
∴BE=CD
∴AE=AB+BE=AB+CD=34(4分)
∵CE⊥ACAC=BD=CE
∴△ACE是等腰直角三角形
∴△ACF、△ECF是等腰直角三角形
∴CF=AF=EF=
1
2
×34=17(6分)
在RT△CBF中BF=
BC
2
-
CF
2
=
(13
2
)
2
-
17
2
=7
又BF=
1
2
(AB-CD)=7
∴AB-CD=14
∵AB+CD=34
∴AB=24CD=10
即a=24、b=10(8分)
解:过C作CE∥DB交AB的延长线于E,作CF⊥AE
∵BD⊥AC
∴CE⊥AC(2分)
∵ABCD是等腰梯形
∴AC=BD
∵AB∥CD
∴DBEC是平行四边形
∴BE=CD
∴AE=AB+BE=AB+CD=34(4分)
∵CE⊥ACAC=BD=CE
∴△ACE是等腰直角三角形
∴△ACF、△ECF是等腰直角三角形
∴CF=AF=EF=
1
2
×34=17(6分)
在RT△CBF中BF=
BC
2
-
CF
2
=
(13
2
)
2
-
17
2
=7
又BF=
1
2
(AB-CD)=7
∴AB-CD=14
∵AB+CD=34
∴AB=24CD=10
即a=24、b=10(8分)
考点梳理
考点
分析
点评
等腰梯形的性质.
过C作CE∥DB交AB的延长线于E,作CF⊥AE,从而构建了平行四边形DCEB,则把AB+CD转化到AE边上,然后利用等腰直角三角形的性质求解.
本题主要考查等腰梯形的性质的应用.解题关键是作辅助线,这是等腰梯形中常见的一种作法,要熟练掌握.
找相似题
(2012·遂宁)如图,已知等腰梯形ABCD中,AD∥BC,∠B=60°,AD=2,BC=8,则此等腰梯形的周长为( )
(2011·湘潭)下列四边形中,对角线相等且互相垂直平分的是( )
(2011·武汉)如图.在梯形ABCD中,AB∥DC,AD=DC=CB,若∠ABD=25°,则∠BAD的大小是( )
(2011·乌鲁木齐)如图.梯形ABCD中,AD∥BC、AB=CD,AC丄BD于点O,∠BAC=60°,若BC=
6
,则此梯形的面积为( )
(2011·宁夏)等腰梯形的上底是2cm,腰长是4cm,一个底角是60°,则等腰梯形的下底是( )