答案
解:能.

证明:过点B作BG⊥CD,垂足为G,过点P作PH⊥BG,垂足为H,
∵BG⊥CD,PF⊥CD,PH⊥BG,
∴∠PHG=∠HGC=∠PFG=90°,
∴四边形PHGF是矩形,
∴PF=HG,PH∥CD,
∴∠BPH=∠C,
在等腰梯形ABCD中,∠PBE=∠C,
∴∠PBE=∠BPH,
∵∠PEB=∠BHP=90°,BP=PB,∠PBE=∠BPH,
∴△PBE≌△BPH(AAS)
∴PE=BH,
∴PE+PF=BH+HG=BG.
故PE+PF的值是为一定值.
解:能.

证明:过点B作BG⊥CD,垂足为G,过点P作PH⊥BG,垂足为H,
∵BG⊥CD,PF⊥CD,PH⊥BG,
∴∠PHG=∠HGC=∠PFG=90°,
∴四边形PHGF是矩形,
∴PF=HG,PH∥CD,
∴∠BPH=∠C,
在等腰梯形ABCD中,∠PBE=∠C,
∴∠PBE=∠BPH,
∵∠PEB=∠BHP=90°,BP=PB,∠PBE=∠BPH,
∴△PBE≌△BPH(AAS)
∴PE=BH,
∴PE+PF=BH+HG=BG.
故PE+PF的值是为一定值.