试题

题目:
抛物线y=
1
2
x2+x-
3
2
的最低点坐标是
(-1,-2)
(-1,-2)

答案
(-1,-2)

解:y=
1
2
x2+x-
3
2
=
1
2
(x2+2x)-
3
2

=
1
2
(x2+2x+1-1)-
3
2

=
1
2
(x+1)2-2
则其最低点坐标为(-1,-2).
故答案为(-1,-2).
考点梳理
二次函数的最值.
由于函数的二次项系数为正数,故开口向上,函数有最小值,配方后即可求出最低点坐标.
本题考查了二次函数的最值,将一般式配方,利用顶点式是解答此题的最简、最有效方法.
计算题.
找相似题