试题
题目:
如图所示,在等腰梯形ABCD中,AD∥BC,AD=DC,AB⊥AC,则∠BAD的度数为( )
A.120°
B.119°
C.121°
D.以上答案均不对
答案
A
解:∵在等腰梯形ABCD中,AD∥BC,AD=DC
∴∠DAC=∠ACB=∠DCA
∵AB=DC
∴∠B=∠DCB
∴∠ACB=
1
2
∠B
∵AB⊥AC
∴∠ACB=∠30°
∵∠BAD=∠BAC+∠CAD=90°+30°=120°
故选A.
考点梳理
考点
分析
点评
等腰梯形的性质.
由题中已知条件可证△DAC为等腰三角形,又AD∥BC∠B=∠C,从而得到∠B=2∠ACB,即∠ACB=∠30°,又因为∠BAC=90°,所以∠BAD=120°.
此题主要考查学生对等腰梯形的性质及角平分线等知识点的掌握情况.
找相似题
(2012·遂宁)如图,已知等腰梯形ABCD中,AD∥BC,∠B=60°,AD=2,BC=8,则此等腰梯形的周长为( )
(2011·湘潭)下列四边形中,对角线相等且互相垂直平分的是( )
(2011·武汉)如图.在梯形ABCD中,AB∥DC,AD=DC=CB,若∠ABD=25°,则∠BAD的大小是( )
(2011·乌鲁木齐)如图.梯形ABCD中,AD∥BC、AB=CD,AC丄BD于点O,∠BAC=60°,若BC=
6
,则此梯形的面积为( )
(2011·宁夏)等腰梯形的上底是2cm,腰长是4cm,一个底角是60°,则等腰梯形的下底是( )