试题
题目:
如图,抛物线y=x
2
+2x+c的顶点在双曲线y=
2
x
上,则y有最小值为
-2
-2
.
答案
-2
解:抛物线y=x
2
+2x+c得对称轴为x=-
b
2a
=-
2
2×1
=-1,
代入双曲线y=
2
x
,得y=
2
-1
=-2,
即则y有最小值为-2.
考点梳理
考点
分析
点评
二次函数的最值.
本题考查二次函数最小(大)值的求法,要注意结合两个函数的特点来解答.
求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.
找相似题
(2012·台湾)判断下列哪一组的a、b、c,可使二次函数y=ax
2
+bx+c-5x
2
-3x+7在坐标平面上的图形有最低点?( )
(2012·兰州)已知二次函数y=a(x+1)
2
-b(a≠0)有最小值1,则a,b的大小关系为( )
(2012·贵阳)已知二次函数y=ax
2
+bx+c(a<0)的图象如图所示,当-5≤x≤0时,下列说法正确的是( )
(2011·防城港)已知拋物线y=-
1
3
x
2
+2,当1≤x≤5时,y的最大值是( )
(2010·自贡)y=x
2
+(1-a)x+1是关于x的二次函数,当x的取值范围是1≤x≤3时,y在x=1时取得最大值,则实数a的取值范围是( )