试题

题目:
我们知道,配方法是一种非常重要的数学方法,它的运用非常广泛.学好配方法,对于中学生来说显得尤为重要.试用配方法解决下列问题吧!
(1)试证明:不论x取何值,代数x2+4x+
9
2
的值总大于0.
(2)若 2x2-8x+14=k,求k的最小值.
(3)若x2-8x+12-k=0,求2x+k的最小值.
答案
解:(1)x2+4x+
9
2
=(x+2)2+
1
2

因此不论x取何值,代数式的值总大于0.

(2)k=2x2-8x+14=2(x-2)2+6,
所以当x=2时,k的最小值为6.

(3)∵x2-8x+12-k=0,
∴k=x2-8x+12.
∴2x+k=2x+x2-8x+12=x2-6x+12=(x-3)2+3.
所以2x+k的最小值是3.
解:(1)x2+4x+
9
2
=(x+2)2+
1
2

因此不论x取何值,代数式的值总大于0.

(2)k=2x2-8x+14=2(x-2)2+6,
所以当x=2时,k的最小值为6.

(3)∵x2-8x+12-k=0,
∴k=x2-8x+12.
∴2x+k=2x+x2-8x+12=x2-6x+12=(x-3)2+3.
所以2x+k的最小值是3.
考点梳理
二次函数的最值;完全平方式.
(1)通过配方后形式可以看出不论x取何值,代数式总大于0.
(2)通过配方可求出最小值.
(3)先求出2x+k的代数式,然后通过配方求出最小值.
本题考查二次函数式的最值以及用配方法求完全平方式的最值.
找相似题