试题
题目:
(2007·白云区二模)如图,在等腰梯形ABCD中,AB∥CD,对角线AC平分∠BAD,∠B=60°,CD=2cm,则梯形ABCD的周长为( )
A.8cm
B.10cm
C.12cm
D.无法计算
答案
B
解:∵AB∥CD,AC平分∠BAD,
∴∠DAC=∠CAB=∠DCA,
∴AD=CD=2,BC=AD=2.
∵ABCD为等腰梯形,
∴∠B=∠BAD=60°,
∴∠BAC=30°,∠ACB=90°.
∴AB=2BC=4.
∴梯形ABCD的周长=2+2+2+4=10(cm).
故选B.
考点梳理
考点
分析
点评
等腰梯形的性质.
根据CD∥AB,AC平分∠BAD可证CD=AD=BC=2;由角度得∠ACB=90°,从而得 AB=2BC=4.
此题考查等腰梯形的性质和特殊直角三角形的性质,属基础题.
找相似题
(2012·遂宁)如图,已知等腰梯形ABCD中,AD∥BC,∠B=60°,AD=2,BC=8,则此等腰梯形的周长为( )
(2011·湘潭)下列四边形中,对角线相等且互相垂直平分的是( )
(2011·武汉)如图.在梯形ABCD中,AB∥DC,AD=DC=CB,若∠ABD=25°,则∠BAD的大小是( )
(2011·乌鲁木齐)如图.梯形ABCD中,AD∥BC、AB=CD,AC丄BD于点O,∠BAC=60°,若BC=
6
,则此梯形的面积为( )
(2011·宁夏)等腰梯形的上底是2cm,腰长是4cm,一个底角是60°,则等腰梯形的下底是( )