试题
题目:
(2004·枣庄)如图,某花木场有一块形如等腰梯形ABCD的空地,各边的中点分别是E,F,G,H,测量得对角线AC=10米,现想用篱笆围成四边形EFGH的场地,则需篱笆总长度是( )
A.40米
B.30米
C.20米
D.10米
答案
C
解:连接BD.
根据三角形中位线定理,得
EF=HG=
1
2
AC=5,EH=FG=
1
2
BD.
∵四边形ABCD是等腰梯形,
∴AC=BD.
∴EF=FG=GH=HE=5.
∴需篱笆总长度是EF+HG+EH+GF=2AC=2×10=20(米).
故选C.
考点梳理
考点
分析
点评
专题
三角形中位线定理;等腰梯形的性质.
根据三角形中位线定理和等腰梯形的对角线相等可证明篱笆的形状为菱形,且边长等于等腰梯形的对角线的一半,即可求得篱笆总长度.
解答此题应根据等腰梯形的性质及三角形的中位线定理解答.
注意:顺次连接对角线相等的四边形各边中点所得四边形是菱形.
应用题;压轴题.
找相似题
(2012·遂宁)如图,已知等腰梯形ABCD中,AD∥BC,∠B=60°,AD=2,BC=8,则此等腰梯形的周长为( )
(2011·湘潭)下列四边形中,对角线相等且互相垂直平分的是( )
(2011·武汉)如图.在梯形ABCD中,AB∥DC,AD=DC=CB,若∠ABD=25°,则∠BAD的大小是( )
(2011·乌鲁木齐)如图.梯形ABCD中,AD∥BC、AB=CD,AC丄BD于点O,∠BAC=60°,若BC=
6
,则此梯形的面积为( )
(2011·宁夏)等腰梯形的上底是2cm,腰长是4cm,一个底角是60°,则等腰梯形的下底是( )