试题
题目:
如图,已知四边形ABCD是平行四边形,点F在BA的延长线上,连接CF交AD于点E.当点E是AD的中点,且BC=2CD时,求证:∠F=∠BCF.
答案
证明:∵四边形ABCD是平行四边形,
∴CD∥AB,
∴∠D=∠FAE,∠FEA=∠CED,
∵点E是AD的中点
∴DE=EA,
在△CDE和△FAE中,
∵
DE=EA
∠FEA=∠CED
∠D=∠FAE
,
∴△CDE≌△FAE,
∴CD=AF,
∴BF=2CD,
∵BC=2CD,
∴BF=BC,
∴∠F=∠BCF.
证明:∵四边形ABCD是平行四边形,
∴CD∥AB,
∴∠D=∠FAE,∠FEA=∠CED,
∵点E是AD的中点
∴DE=EA,
在△CDE和△FAE中,
∵
DE=EA
∠FEA=∠CED
∠D=∠FAE
,
∴△CDE≌△FAE,
∴CD=AF,
∴BF=2CD,
∵BC=2CD,
∴BF=BC,
∴∠F=∠BCF.
考点梳理
考点
分析
点评
专题
平行四边形的性质;全等三角形的判定与性质.
根据四边形ABCD是平行四边形,可得出∠D=∠FAE,∠FEA=∠CED,又E是AD的中点可以得到△CDE≌△FAE,然后根据全等三角形的性质可以证明题目结论.
此题主要考查平行四边形的性质、相似三角形的判定及全等三角形的判定的理解及运用,解题关键是得出△CDE≌△FAE,难度一般.
证明题.
找相似题
(2013·黔西南州)已知·ABCD中,∠A+∠C=200°,则∠B的度数是( )
如图,在·ABCD中,AE⊥BC于E,AE=EB=EC=a,且a是一元二次方程
x
2
-
2
x+
1
2
=0
的一个根,求·ABCD的周长.
如图,四边形ABCD是平行四边形,对角线AC、BD相交于点O,BD⊥AD,AD=8,DC=10,求BC,AB及OB的长?
如图:已知四边形ABCD是平行四边形,E、F是AC上的两点,且AE=CF.
证明:DE=BF.
如图,在平行四边形ABCD中,DB⊥AD,若AD=8,AB=10,求CD、DB和AC的长.