试题
题目:
如图,平行四边形ABCD中,∠A的平分线AE交CD于E,AB=5,BC=3,则EC的长( )
A.1
B.1.5
C.2
D.3
答案
C
解:根据平行四边形的对边相等,得:CD=AB=5,AD=BC=3.
根据平行四边形的对边平行,得:CD∥AB,
∴∠AED=∠BAE,
又∠DAE=∠BAE,
∴∠DAE=∠AED.
∴ED=AD=3,
∴EC=CD-ED=5-3=2.
故选C.
考点梳理
考点
分析
点评
平行四边形的性质.
根据平行四边形的性质及AE为角平分线可知:BC=AD=DE=3,又有CD=AB=5,可求EC的长.
本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.
找相似题
(2013·黔西南州)已知·ABCD中,∠A+∠C=200°,则∠B的度数是( )
如图,在·ABCD中,AE⊥BC于E,AE=EB=EC=a,且a是一元二次方程
x
2
-
2
x+
1
2
=0
的一个根,求·ABCD的周长.
如图,四边形ABCD是平行四边形,对角线AC、BD相交于点O,BD⊥AD,AD=8,DC=10,求BC,AB及OB的长?
如图:已知四边形ABCD是平行四边形,E、F是AC上的两点,且AE=CF.
证明:DE=BF.
如图,在平行四边形ABCD中,DB⊥AD,若AD=8,AB=10,求CD、DB和AC的长.