试题
题目:
如图,在平行四边形ABCD中,BE平分∠ABC交AD于点E,DF平分∠ADC交BC于点F.试说明BE=DF.
答案
证明:在平行四边形ABCD中,AD∥BC,
∴∠AEB=∠CBE,
又BE平分∠ABC,
∴∠ABE=∠EBC,
∴∠ABE=∠AEB,即AB=AE,
同理CF=CD,
又AB=CD,∴CF=AE,
∴BF=DE,
∴四边形EBFD是平行四边形,
∴BE=DF.
证明:在平行四边形ABCD中,AD∥BC,
∴∠AEB=∠CBE,
又BE平分∠ABC,
∴∠ABE=∠EBC,
∴∠ABE=∠AEB,即AB=AE,
同理CF=CD,
又AB=CD,∴CF=AE,
∴BF=DE,
∴四边形EBFD是平行四边形,
∴BE=DF.
考点梳理
考点
分析
点评
专题
平行四边形的性质.
由平行四边形的性质及角平分线的性质可得AB=AE,CF=CD,进而可得四边形EBFD是平行四边形,即可得出结论.
本题主要考查平行四边形的性质及角平分线的性质问题,要熟练掌握,并能够求解一些简单的计算、证明问题.
证明题.
找相似题
(2013·黔西南州)已知·ABCD中,∠A+∠C=200°,则∠B的度数是( )
如图,在·ABCD中,AE⊥BC于E,AE=EB=EC=a,且a是一元二次方程
x
2
-
2
x+
1
2
=0
的一个根,求·ABCD的周长.
如图,四边形ABCD是平行四边形,对角线AC、BD相交于点O,BD⊥AD,AD=8,DC=10,求BC,AB及OB的长?
如图:已知四边形ABCD是平行四边形,E、F是AC上的两点,且AE=CF.
证明:DE=BF.
如图,在平行四边形ABCD中,DB⊥AD,若AD=8,AB=10,求CD、DB和AC的长.