试题
题目:
(2003·天津)如图,O为平行四边形ABCD对角线AC与BD的交点,FE经过O点,且与边AD,BC分别交于点E,F,若BF=DE,则图中全等的三角形最多有( )
A.2对
B.3对
C.5对
D.6对
答案
D
解:①△ADC≌△CBA
∵ABCD为平行四边形
∴AB=CD,∠ABC=∠ADC,AD=BC
∴△ADC≌△CBA;
②△ABD≌△CDB
∵ABCD为平行四边形
∴AB=CD,∠BAD=∠BCD,AD=BC
∴△ABD≌△CDB;
③△OAD≌△OCB
∵对角线AC与BD的交于O
∴OA=OC,OD=OB,∠AOD=∠BOC
∴△OAD≌△OCB;
④△OEA≌△OFC
∵对角线AC与BD的交于O
∴OA=OC,∠AOE=∠COF,∠AOE=∠COF
∴△OEA≌△OFC;
⑤△OED≌△OFB
∵对角线AC与BD的交于O
∴OD=OB,∠EOD=∠FOB,OE=OF
∴△OED≌△OFB;
⑥△OAB≌△OCD
∵对角线AC与BD的交于O
∴OA=OC,∠AOB=∠DOC,OB=OD
∴△OAB≌△OCD.
故选D.
考点梳理
考点
分析
点评
全等三角形的判定;平行四边形的性质.
本题是开放题,应先根据平行四边形的性质及已知条件得到图中全等的三角形:△ADC≌△CBA,△ABD≌△CDB,△OAD≌△OCB,△OEA≌△OFC,△OED≌△OFB,△OAB≌△OCD共6对.再分别进行证明.
本题考查平行四边形的性质及全等三角形的判定条件.判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
找相似题
(2013·黔西南州)已知·ABCD中,∠A+∠C=200°,则∠B的度数是( )
如图,在·ABCD中,AE⊥BC于E,AE=EB=EC=a,且a是一元二次方程
x
2
-
2
x+
1
2
=0
的一个根,求·ABCD的周长.
如图,四边形ABCD是平行四边形,对角线AC、BD相交于点O,BD⊥AD,AD=8,DC=10,求BC,AB及OB的长?
如图:已知四边形ABCD是平行四边形,E、F是AC上的两点,且AE=CF.
证明:DE=BF.
如图,在平行四边形ABCD中,DB⊥AD,若AD=8,AB=10,求CD、DB和AC的长.