试题
题目:
(2010·泰安)如图,E是·ABCD的边AD的中点,CE与BA的延长线交于点F,若∠FCD=∠D,则下列结论不成立的是( )
A.AD=CF
B.BF=CF
C.AF=CD
D.DE=EF
答案
B
解:∵ABCD是平行四边形,∴AD=BC,∠B=∠D,AB∥CD.
∵BF∥CD,∴∠F=∠FCD,∠FAE=∠D.
∵AE=ED,
∴△AEF≌△DEC.
∴AF=CD,EF=CE.
∵∠FCD=∠D,∴CE=DE.
∴DE=EF.
故C、D都成立;
∵∠B=∠D=∠F,则CF=BC=AD.故A成立.
没有条件证明BF=CF.
故选B.
考点梳理
考点
分析
点评
平行四边形的性质.
可证△AEF≌△DEC(AAS或ASA),由∠FCD=∠D得△DEC、△AEF都是等腰三角形.
故易判断C、D都成立;
∠B=∠D=∠F,则CF=BC=AD.
没有条件证明BF=CF.
此题考查了平行四边形的性质,即平行四边形的对边平行且相等,对角相等,对角线互相平分.
找相似题
(2013·黔西南州)已知·ABCD中,∠A+∠C=200°,则∠B的度数是( )
如图,在·ABCD中,AE⊥BC于E,AE=EB=EC=a,且a是一元二次方程
x
2
-
2
x+
1
2
=0
的一个根,求·ABCD的周长.
如图,四边形ABCD是平行四边形,对角线AC、BD相交于点O,BD⊥AD,AD=8,DC=10,求BC,AB及OB的长?
如图:已知四边形ABCD是平行四边形,E、F是AC上的两点,且AE=CF.
证明:DE=BF.
如图,在平行四边形ABCD中,DB⊥AD,若AD=8,AB=10,求CD、DB和AC的长.