试题
题目:
如图,在Rt△ABC中,∠C=90°,BD平分∠ABC交AC于D,DE⊥AB于E,若DE=1cm,∠CBD=30°,求∠A的度数和AC的长.
答案
解:在Rt△ABC中,
∵BD平分∠ABC,∠CBD=30°
∴∠ABC=60°,
∴∠A=30°,
∴AD=2DE=2cm,
∵∠C=90°,BD平分∠ABC交AC于D,DE⊥AB于E,
∴DE⊥AB,DC=DE=1.
∴AC=3cm.
解:在Rt△ABC中,
∵BD平分∠ABC,∠CBD=30°
∴∠ABC=60°,
∴∠A=30°,
∴AD=2DE=2cm,
∵∠C=90°,BD平分∠ABC交AC于D,DE⊥AB于E,
∴DE⊥AB,DC=DE=1.
∴AC=3cm.
考点梳理
考点
分析
点评
角平分线的性质;含30度角的直角三角形.
在Rt△ABC中,∠C=90°,BD平分∠ABC,即可求得∠A的度数,继而求得AD的值,又由角平分线的性质,求得CD的值,即可求得答案.
本题考查了对含30度角的直角三角形的性质和角平分线性质的应用,求出CD和AD的长是解此题的关键.
找相似题
(2010·路南区三模)如图,在平面直角坐标系中,△ABO为底角是30°的等腰三角形,OA=AB=4,O为坐标原点,点B在x轴上,点P在直线AB上运动,当线段OP最短时,点P的坐标为( )
(2010·黄岩区模拟)一副三角板如图摆放,点F是45°角三角板ABC的斜边的中点,AC=4.当30°角三角板DEF的直角顶点绕着点F旋转时,直角边DF,EF分别与AC,BC相交于点M,N.在旋转过程中有以下结论:①MF=NF:②四边形CMFN有可能为正方形;③MN长度的最小值为2;④四边形CMFN的面积保持不变;⑤△CMN面积的最大值为2.其中正确的个数是( )
如图,在△ABC中,∠C=90°,∠ABC=15°,点D、E分别在BC、AB上,且DE垂直平分AB,BD=3,则DC等于( )
如图,△ABC中,∠ACB=90°,CD是高,∠A=30°,则BD与AB的关系是( )
Rt△ABC中,∠C=90°,∠A=30°,下列结论正确的是( )