试题
题目:
如图,在·ABCD中,AB=1,BC=3,∠ABC与∠BCD的平分线分别交AD于E、F点,则EF=
1
1
.
答案
1
解:∵AD∥BC,BE平分∠ABC,
∴∠ABE=∠CBE,∠AEB=∠CBE,
∴∠ABE=∠AEB,
∴AE=AB=1.
同理得到DF=CD=AB=1.
∵AD=BC=3,
∴EF=AD-AE-DF=1.
故答案为1.
考点梳理
考点
分析
点评
平行四边形的性质;角平分线的性质;等腰三角形的性质.
根据角平分线及平行线的性质,可推出△ABE,△CDF都是等腰三角形,即AB=AE,CD=FD,而AB=CD,AD=BC,利用相等的和差关系,求EF.
本题综合应用了平行四边形的性质和角平分线定义来求得所需线段的值.
找相似题
(2013·黔西南州)已知·ABCD中,∠A+∠C=200°,则∠B的度数是( )
如图,在·ABCD中,AE⊥BC于E,AE=EB=EC=a,且a是一元二次方程
x
2
-
2
x+
1
2
=0
的一个根,求·ABCD的周长.
如图,四边形ABCD是平行四边形,对角线AC、BD相交于点O,BD⊥AD,AD=8,DC=10,求BC,AB及OB的长?
如图:已知四边形ABCD是平行四边形,E、F是AC上的两点,且AE=CF.
证明:DE=BF.
如图,在平行四边形ABCD中,DB⊥AD,若AD=8,AB=10,求CD、DB和AC的长.