试题
题目:
在平行四边形ABCD中,O是对角线AC的中点,过O点作直线EF分别交BC、AD于E、F.
求证:BE=DF.
答案
证明:在平行四边形ABCD中,
∵AD∥BC,
∴∠FAC=∠BCA,∠AFE=∠CEF,
又∵AO=CO,
∴△AOF≌△COE.
∴AF=CE.
又∵AD=BC,
∴AD-AF=BC-BE,
即BE=DF.
证明:在平行四边形ABCD中,
∵AD∥BC,
∴∠FAC=∠BCA,∠AFE=∠CEF,
又∵AO=CO,
∴△AOF≌△COE.
∴AF=CE.
又∵AD=BC,
∴AD-AF=BC-BE,
即BE=DF.
考点梳理
考点
分析
点评
专题
平行四边形的性质;全等三角形的判定与性质.
易证△AOF≌△COE,那么AF=CE,由AD=BC可得BE=DF.
本题考查了平行四边形的性质及全等三角形的判定,解答本题需要掌握两点,①平行四边形的对边相等且平行,②全等三角形的对应边、对应角分别相等.
证明题.
找相似题
(2013·黔西南州)已知·ABCD中,∠A+∠C=200°,则∠B的度数是( )
如图,在·ABCD中,AE⊥BC于E,AE=EB=EC=a,且a是一元二次方程
x
2
-
2
x+
1
2
=0
的一个根,求·ABCD的周长.
如图,四边形ABCD是平行四边形,对角线AC、BD相交于点O,BD⊥AD,AD=8,DC=10,求BC,AB及OB的长?
如图:已知四边形ABCD是平行四边形,E、F是AC上的两点,且AE=CF.
证明:DE=BF.
如图,在平行四边形ABCD中,DB⊥AD,若AD=8,AB=10,求CD、DB和AC的长.