试题
题目:
如图,四边形ABCD是平行四边形,点E、F为BD上的点,AE∥CF,试判断线段BE+EF=DE是否成立?并说明理由.
答案
解:成立,理由如下:
∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD,
∴∠ABD=∠CDB,
又∵AE∥CF,
∴∠AED=∠CFB,
∴∠AEB=∠CFD,
△ABE≌△CDF,
∴DF=BE,
∴BE+EF=DF+EF=DE.
解:成立,理由如下:
∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD,
∴∠ABD=∠CDB,
又∵AE∥CF,
∴∠AED=∠CFB,
∴∠AEB=∠CFD,
△ABE≌△CDF,
∴DF=BE,
∴BE+EF=DF+EF=DE.
考点梳理
考点
分析
点评
专题
平行四边形的性质;全等三角形的判定与性质.
本题首先依据平行四边形的性质得出△ABE≌△CDF,然后求出关键即DF=BE,进而解决问题.
本题主要考查平行四边形的性质,全等三角形的性质及判定,解题的关键是由三角形的全等得出DF=BE.
探究型.
找相似题
(2013·黔西南州)已知·ABCD中,∠A+∠C=200°,则∠B的度数是( )
如图,在·ABCD中,AE⊥BC于E,AE=EB=EC=a,且a是一元二次方程
x
2
-
2
x+
1
2
=0
的一个根,求·ABCD的周长.
如图,四边形ABCD是平行四边形,对角线AC、BD相交于点O,BD⊥AD,AD=8,DC=10,求BC,AB及OB的长?
如图:已知四边形ABCD是平行四边形,E、F是AC上的两点,且AE=CF.
证明:DE=BF.
如图,在平行四边形ABCD中,DB⊥AD,若AD=8,AB=10,求CD、DB和AC的长.