试题
题目:
(2008·怀化)如图,在平行四边形ABCD中,DB=DC,∠A=65°,CE⊥BD于E,则∠BCE=
25
25
度.
答案
25
解:∵A=65°,
∴∠BCD=65°;
∵DB=DC,
∴∠BCD=∠DBC=65°,
∵CE⊥BD,
∴∠CEB=90°,
∴∠BCE=90°-∠DBC=25°.
故答案为25.
考点梳理
考点
分析
点评
专题
平行四边形的性质.
平行四边形对角相等,所以可先求出∠BCD,在等腰三角形中,利用等边对等角这一性质,可以求出∠DBC,再利用直角三角形两锐角互余即可求解.
主要考查了平行四边形的基本性质,并利用性质解题.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.
计算题.
找相似题
(2013·黔西南州)已知·ABCD中,∠A+∠C=200°,则∠B的度数是( )
如图,在·ABCD中,AE⊥BC于E,AE=EB=EC=a,且a是一元二次方程
x
2
-
2
x+
1
2
=0
的一个根,求·ABCD的周长.
如图,四边形ABCD是平行四边形,对角线AC、BD相交于点O,BD⊥AD,AD=8,DC=10,求BC,AB及OB的长?
如图:已知四边形ABCD是平行四边形,E、F是AC上的两点,且AE=CF.
证明:DE=BF.
如图,在平行四边形ABCD中,DB⊥AD,若AD=8,AB=10,求CD、DB和AC的长.