试题
题目:
(2013·江西)如图,·ABCD与·DCFE的周长相等,且∠BAD=60°,∠F=110°,则∠DAE的度数为
25°
25°
.
答案
25°
解:∵·ABCD与·DCFE的周长相等,且CD=CD,
∴AD=DE,
∵∠DAE=∠DEA,
∵∠BAD=60°,∠F=110°,
∴∠ADC=120°,∠CDE═∠F=110°,
∴∠ADE=360°-120°-110°=130°,
∴∠DAE=
180°-130°
2
=25°,
故答案为:25°.
考点梳理
考点
分析
点评
专题
平行四边形的性质.
由,·ABCD与·DCFE的周长相等,可得到AD=DE即△ADE是等腰三角形,再由且∠BAD=60°,∠F=110°,即可求出∠DAE的度数.
本题考查了平行四边形的性质:平行四边形的对边相等、平行四边形的对角相等以及邻角互补和等腰三角形的判定和性质、三角形的内角和定理.
压轴题.
找相似题
(2013·黔西南州)已知·ABCD中,∠A+∠C=200°,则∠B的度数是( )
如图,在·ABCD中,AE⊥BC于E,AE=EB=EC=a,且a是一元二次方程
x
2
-
2
x+
1
2
=0
的一个根,求·ABCD的周长.
如图,四边形ABCD是平行四边形,对角线AC、BD相交于点O,BD⊥AD,AD=8,DC=10,求BC,AB及OB的长?
如图:已知四边形ABCD是平行四边形,E、F是AC上的两点,且AE=CF.
证明:DE=BF.
如图,在平行四边形ABCD中,DB⊥AD,若AD=8,AB=10,求CD、DB和AC的长.