试题
题目:
(2009·香坊区二模)如图,四边形ABCD是平行四边形,BE∥DF,分别交对角线AC于E、F.
求证:AE=CF.
答案
证明:连接BD交AC于点O,
∵四边形ABCD为平行四边形,
∴OA=OB,OC=OD,
∵BE∥DF,
∴∠BEO=∠BFD,
在△BEO和△DFO中
∠BEO=∠DFO
∠EOB=∠FOD
OB=OD
∴△BEO≌△DFO,
∴OE=OF,
∴OA-OE=OC-OF,
即AE=CF.
证明:连接BD交AC于点O,
∵四边形ABCD为平行四边形,
∴OA=OB,OC=OD,
∵BE∥DF,
∴∠BEO=∠BFD,
在△BEO和△DFO中
∠BEO=∠DFO
∠EOB=∠FOD
OB=OD
∴△BEO≌△DFO,
∴OE=OF,
∴OA-OE=OC-OF,
即AE=CF.
考点梳理
考点
分析
点评
专题
平行四边形的性质;全等三角形的判定与性质.
连接BD交AC于点O,根据平行四边形性质得出OA=OC,OB=OD,根据平行线得出∠BEO=∠DFO,根据AAS证△BEO≌△DFO,推出OE=OF即可.
本题考查了平行线性质,平行四边形的性质,全等三角形的性质和判定的综合运用.
证明题.
找相似题
(2013·黔西南州)已知·ABCD中,∠A+∠C=200°,则∠B的度数是( )
如图,在·ABCD中,AE⊥BC于E,AE=EB=EC=a,且a是一元二次方程
x
2
-
2
x+
1
2
=0
的一个根,求·ABCD的周长.
如图,四边形ABCD是平行四边形,对角线AC、BD相交于点O,BD⊥AD,AD=8,DC=10,求BC,AB及OB的长?
如图:已知四边形ABCD是平行四边形,E、F是AC上的两点,且AE=CF.
证明:DE=BF.
如图,在平行四边形ABCD中,DB⊥AD,若AD=8,AB=10,求CD、DB和AC的长.