试题
题目:
(2012·河源二模)已知:如图,在·ABCD中,E是CA延长线上的点,F是AC延长线上的点,且AE=CF.求证:
(1)△ABE≌△CDF;
(2)BE∥DF.
答案
解:(1)∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD,
∴∠BAC=∠DCA,
∵∠BAC+∠BAE=∠DCA+∠DCF=180°,
∴∠BAE=∠DCF,
∵AE=CF,
∴△ABE≌△CDF;
(2)∵△ABE≌△CDF,
∴∠E=∠F,
∴BE∥DF.
解:(1)∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD,
∴∠BAC=∠DCA,
∵∠BAC+∠BAE=∠DCA+∠DCF=180°,
∴∠BAE=∠DCF,
∵AE=CF,
∴△ABE≌△CDF;
(2)∵△ABE≌△CDF,
∴∠E=∠F,
∴BE∥DF.
考点梳理
考点
分析
点评
专题
平行四边形的性质;全等三角形的判定与性质.
(1)根据平行四边形的性质可得出AB=CD,∠BAE=∠DCF,结合AE=CF即可证明三角形全等.
(2)根据全等三角形的性质可得出∠E=∠F,继而可判断平行.
此题考查了平行四边形的性质、全等三角形的判定与性质,属于基础题,解答本题需要我们熟练掌握平行四边形的对边相等且互补,难度一般.
证明题.
找相似题
(2013·黔西南州)已知·ABCD中,∠A+∠C=200°,则∠B的度数是( )
如图,在·ABCD中,AE⊥BC于E,AE=EB=EC=a,且a是一元二次方程
x
2
-
2
x+
1
2
=0
的一个根,求·ABCD的周长.
如图,四边形ABCD是平行四边形,对角线AC、BD相交于点O,BD⊥AD,AD=8,DC=10,求BC,AB及OB的长?
如图:已知四边形ABCD是平行四边形,E、F是AC上的两点,且AE=CF.
证明:DE=BF.
如图,在平行四边形ABCD中,DB⊥AD,若AD=8,AB=10,求CD、DB和AC的长.