试题
题目:
从等腰三角形底边上任意一点分别作两腰的平行线,与两腰所围成的平行四边形的周长等于三角形的( )
A.两腰长的和
B.周长的一半
C.周长
D.一腰长与底边长的和
答案
A
解:∵AB=AC,ED∥AC,DF∥AB
∴四边形AEDF是平行四边形
∴DE=AF,DF=AE
∵DE∥AC
∴∠C=∠EDB
∵AB=AC
∴∠B=∠C
∴∠B=∠EDB
∴BE=ED
同理:DF=FC
∴·AEDF的周长=AB+AC.
故选A.
考点梳理
考点
分析
点评
平行四边形的性质;等腰三角形的性质.
根据已知得四边形AEDF是平行四边形,从而根据平行四边形的性质及等腰三角形的性质可推出BE=DE,DF=FC,从而不难得到结论.
本题结合等腰三角形的性质考查了平行四边形的判定与性质,解题的关键是利用平行线证得平行四边形.
找相似题
(2013·黔西南州)已知·ABCD中,∠A+∠C=200°,则∠B的度数是( )
如图,在·ABCD中,AE⊥BC于E,AE=EB=EC=a,且a是一元二次方程
x
2
-
2
x+
1
2
=0
的一个根,求·ABCD的周长.
如图,四边形ABCD是平行四边形,对角线AC、BD相交于点O,BD⊥AD,AD=8,DC=10,求BC,AB及OB的长?
如图:已知四边形ABCD是平行四边形,E、F是AC上的两点,且AE=CF.
证明:DE=BF.
如图,在平行四边形ABCD中,DB⊥AD,若AD=8,AB=10,求CD、DB和AC的长.