试题

题目:
在·ABCD中,过点C作CE⊥CD交AD于点E,将线段EC绕点E按逆时针方向旋转90°得到线段EF.如图所示.
(1)在图中画图探究:
①当p1为线段CD延长线上任意一点时,连接.EP1,将线段EP1绕点E按逆时针方向旋转90°得到线段EG1判断直线FG1与直线CD的位置关系,并说明理由;(在图1中画)
②当P2为线段DC的延长线上任意一点时,连接EP2,将线EP2绕点E按逆时针方向旋转90°得到线段EG2.判断直线FG2与直线CD的位置关系,画出图形并直接写出你的结论.(在图2中画)
(2)在①的条件下,连接FP1、P1G1,若EP1=8,AD=6,AE=1,AB:CE=3:4,求△P1G1F的面积.
青果学院
答案
解:(1)①直线FG1与直线CD的位置关系为互相垂直.
证明:如图1,设直线FG1与直线CD的交点为H.
∵线段EC、EP1分别绕点E逆时针旋转90°依次得到线段EF、EG1
∴∠P1EG1=∠CEF=90°,EG1=EP1,EF=EC.
∵∠G1EF=90°-∠P1EF,∠P1EC=90°-∠P1EF,青果学院
∴∠G1EF=∠P1EC.
∴△G1EF≌△P1EC.
∴∠G1FE=∠P1CE.
∵EC⊥CD,
∴∠P1CE=90°,
∴∠G1FE=90度.
∴∠EFH=90度.
∴∠FHC=90度.
∴FG1⊥CD.
②按题目要求所画图形见图1,直线G1G2与直线CD的位置关系为互相垂直.

(2)∵四边形ABCD是平行四边形
∴∠B=∠ADC
∵AD=6,AE=1,AB:CE=3:4,
∴DE=5,CD:CE=3:4
可得CE=4
由(1)可得四边形FECH是正方形
∴CH=CE=4
∵(1)①如图2,P1在线段CH的延长线上,
∵FG1=CP1
∴S△P1FG1=
1
2
×FG1·P1H
在Rt△ECP1中,EP1=8,由勾股定理得
CP1=FG1=4
3

∴P1H=4
3
-4
∴S△P1FG1=
1
2
×4
3
× (4
3
-4)
=24-8
3

解:(1)①直线FG1与直线CD的位置关系为互相垂直.
证明:如图1,设直线FG1与直线CD的交点为H.
∵线段EC、EP1分别绕点E逆时针旋转90°依次得到线段EF、EG1
∴∠P1EG1=∠CEF=90°,EG1=EP1,EF=EC.
∵∠G1EF=90°-∠P1EF,∠P1EC=90°-∠P1EF,青果学院
∴∠G1EF=∠P1EC.
∴△G1EF≌△P1EC.
∴∠G1FE=∠P1CE.
∵EC⊥CD,
∴∠P1CE=90°,
∴∠G1FE=90度.
∴∠EFH=90度.
∴∠FHC=90度.
∴FG1⊥CD.
②按题目要求所画图形见图1,直线G1G2与直线CD的位置关系为互相垂直.

(2)∵四边形ABCD是平行四边形
∴∠B=∠ADC
∵AD=6,AE=1,AB:CE=3:4,
∴DE=5,CD:CE=3:4
可得CE=4
由(1)可得四边形FECH是正方形
∴CH=CE=4
∵(1)①如图2,P1在线段CH的延长线上,
∵FG1=CP1
∴S△P1FG1=
1
2
×FG1·P1H
在Rt△ECP1中,EP1=8,由勾股定理得
CP1=FG1=4
3

∴P1H=4
3
-4
∴S△P1FG1=
1
2
×4
3
× (4
3
-4)
=24-8
3
考点梳理
旋转的性质;平行四边形的性质.
(1)①△P1EC按要求旋转后得到的△G1EF全等,再结合∠P1CE=∠G1FE=90°得出结论;
②按照要求画出图形,由图形即可得出答案;
(2)求三角形的面积的关键是确定三角形的底与高,结合已知可得CE=4,且由四边形FECH是正方形,并利用勾股定理CP1的长是难点,求出后求底与高就比较简单,通过线段可以代换出来.从而求出三角形的面积.
本题考查了旋转的性质,平行四边形的性质,三角形的面积,勾股定理的运用,全等三角形的运用等多个知识点.
找相似题