试题
题目:
(2009·宜宾县一模)已知,如图,AB、CD相交于点O,AC∥DB,AO=BO,E、F分别是OC、OD中点.
求证:四边形AFBE是平行四边形.
答案
证明:∵AC∥BD,
∴∠C=∠D,∠CAO=∠DBO,AO=BO.
∴△AOC≌△BOD.
∴CO=DO.
∵E、F分别是OC、OD的中点,
∴OF=
1
2
OD=
1
2
OC=OE.
由AO=BO、EO=FO.
得四边形AFBE是平行四边形.
证明:∵AC∥BD,
∴∠C=∠D,∠CAO=∠DBO,AO=BO.
∴△AOC≌△BOD.
∴CO=DO.
∵E、F分别是OC、OD的中点,
∴OF=
1
2
OD=
1
2
OC=OE.
由AO=BO、EO=FO.
得四边形AFBE是平行四边形.
考点梳理
考点
分析
点评
专题
平行四边形的判定;三角形中位线定理.
此题已知AO=BO,要证四边形AFBE是平行四边形,根据全等三角形,只需证OE=OF就可以了.
本题考查了平行四边形的判定,在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法.
证明题.
找相似题
(2013·牡丹江)如图,四边形ABCD中,AB=CD,对角线AC,BD相交于点O,AE⊥BD于点E,CF⊥BD于点F,连接AF,CE,若DE=BF,则下列结论:①CF=AE;②OE=OF;③四边形ABCD是平行四边形;④图中共有四对全等三角形.其中正确结论的个数是( )
(2013·荆门)四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:
①AD∥BC;②AD=BC;③OA=OC;④OB=OD
从中任选两个条件,能使四边形ABCD为平行四边形的选法有( )
(2011·张家界)顺次连接任意四边形四边中点所得的四边形一定是( )
(2010·绍兴)如图,已知△ABC,分别以A,C为圆心,BC,AB长为半径画弧,两弧在直线BC上方交于点D,连接AD,CD,则有( )
(2009·威海)如图,在四边形ABCD中,E是BC边的中点,连接DE并延长,交AB的延长线于F点,AB=BF.添加一个条件,使四边形ABCD是平行四边形.你认为下面四个条件中可选择的是( )