试题

题目:
青果学院如图,等腰Rt△ABD中,AB=AD,点M 为边AD上一动点,点E在DA的延长线上,且AM=AE,以BE为直角边,向外作等腰Rt△BEG,MG交AB于N,连NE、DN.
(1)求证:∠BEN=∠BGN.
(2)求
NG
AB
的值.
(3)当M在AD上运动时,探究四边形BDNG的形状,并证明之.
答案
(1)证明:连BM,青果学院
∵∠BAD=90°,
∴BA⊥EM,
∵AE=AM,
∴BE=BM,∠EBA=∠MBA,
在△BEN和△BMN中
BE=BM
∠EBA=∠MBA
BN=BN

∴△BMN≌△BEN,
∴∠BMN=∠BEN,
∵BE=BG=BM,
∴∠BMN=∠BGN,
∴∠BEN=∠BGN.青果学院

(2)解:由(1)得,∠GBE=∠GNE=90°,
∴△NME等腰直角三角形,
∴AE=AN,
过G作GH⊥AB,垂足为H,
∴∠H=∠BAE=∠GBE=90°,
∴∠HGB+∠HBG=90°,∠HBG+∠ABE=90°,
∴∠HGB=∠EBA,
在△BGH和△ABE中
∠H=∠BAE
∠HGB=∠ABE
BG=BE

∴△BGH≌△ABE,
∴BH=AE=AN,
HN=AB=GH,NG=
2
GH=
2
AB,
NG
AB
=
2


(3)解:四边形BDNG是平行四边形,
理由是:∵∠DAN=∠BAE=90°,AN=AE,AB=AD,
∴△ADN≌△BAE,
∴DN⊥BE,DN=BE=BG,
又∵BG⊥BE,BG=BE,
∴BG∥DN,BG=DN
∴四边形BDNG为平行四边形.
(1)证明:连BM,青果学院
∵∠BAD=90°,
∴BA⊥EM,
∵AE=AM,
∴BE=BM,∠EBA=∠MBA,
在△BEN和△BMN中
BE=BM
∠EBA=∠MBA
BN=BN

∴△BMN≌△BEN,
∴∠BMN=∠BEN,
∵BE=BG=BM,
∴∠BMN=∠BGN,
∴∠BEN=∠BGN.青果学院

(2)解:由(1)得,∠GBE=∠GNE=90°,
∴△NME等腰直角三角形,
∴AE=AN,
过G作GH⊥AB,垂足为H,
∴∠H=∠BAE=∠GBE=90°,
∴∠HGB+∠HBG=90°,∠HBG+∠ABE=90°,
∴∠HGB=∠EBA,
在△BGH和△ABE中
∠H=∠BAE
∠HGB=∠ABE
BG=BE

∴△BGH≌△ABE,
∴BH=AE=AN,
HN=AB=GH,NG=
2
GH=
2
AB,
NG
AB
=
2


(3)解:四边形BDNG是平行四边形,
理由是:∵∠DAN=∠BAE=90°,AN=AE,AB=AD,
∴△ADN≌△BAE,
∴DN⊥BE,DN=BE=BG,
又∵BG⊥BE,BG=BE,
∴BG∥DN,BG=DN
∴四边形BDNG为平行四边形.
考点梳理
全等三角形的判定与性质;等腰直角三角形;平行四边形的判定.
(1)连接BM,推出BE=BM,∠EBA=∠MBA,根据SAS证△BMN≌△BEN,推出∠BMN=∠BEN,证出∠BMN=∠BGN即可;
(2)过G作GH⊥AB,垂足为H,证△BGH≌△ABE,推出BH=AE=AN,求出NG=
2
GH=
2
AB,代入求出即可;
(3)根据ADN≌△BAE,推出BG⊥BE,BG=BE,得出BG∥DN,BG=DN,根据平行四边形的判定判断即可.
本题考查了平行四边形的判定,全等三角形的性质和判定,等腰直角三角形性质等知识点的运用,主要考查学生运用定理进行推理的能力,题型较好,但有一定的难度.
证明题;几何综合题.
找相似题