试题
题目:
(2011·同安区模拟)如图,在四边形ABCD中,点E是BC的中点,连接DE并延长,交AB延长线于点F,AB=BF.给出下列四个条件:①AD=BC; ②DE=EF; ③∠CDE=∠F;④CD=BF.请你从中选择一个条件
③∠CDE=∠F
③∠CDE=∠F
,使四边形ABCD是平行四边形,并证明你的结论.
答案
③∠CDE=∠F
条件③∠CDE=∠F;
证明:∵∠CDE=∠F,
∴CD∥BF,
又∵E是BC的中点,
∴EC=EB,
在△DEC和△BEF中,
∠CDE=∠F
∠DEC=∠FEB
EC=EB
,
∴△DEC≌△BEF(AAS),
∴CD=BF,
∵AB=BF,
∴AB∥CD且AB=CD,
∴四边形ABCD是平行四边形.
考点梳理
考点
分析
点评
专题
平行四边形的判定;全等三角形的判定与性质.
选择③∠CDE=∠F,根据内错角相等,两直线平行可得CD∥BF,然后利用“角角边”证明△DEC和△BEF全等,根据全等三角形对应边相等可得CD=BF,然后求出CD=AB,根据一组对边平行且相等的四边形是平行四边形即可证明.
本题考查了平行四边形的判定,两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;一组对边平行,一组对角相等的四边形是平行四边形.
证明题.
找相似题
(2013·牡丹江)如图,四边形ABCD中,AB=CD,对角线AC,BD相交于点O,AE⊥BD于点E,CF⊥BD于点F,连接AF,CE,若DE=BF,则下列结论:①CF=AE;②OE=OF;③四边形ABCD是平行四边形;④图中共有四对全等三角形.其中正确结论的个数是( )
(2013·荆门)四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:
①AD∥BC;②AD=BC;③OA=OC;④OB=OD
从中任选两个条件,能使四边形ABCD为平行四边形的选法有( )
(2011·张家界)顺次连接任意四边形四边中点所得的四边形一定是( )
(2010·绍兴)如图,已知△ABC,分别以A,C为圆心,BC,AB长为半径画弧,两弧在直线BC上方交于点D,连接AD,CD,则有( )
(2009·威海)如图,在四边形ABCD中,E是BC边的中点,连接DE并延长,交AB的延长线于F点,AB=BF.添加一个条件,使四边形ABCD是平行四边形.你认为下面四个条件中可选择的是( )