试题
题目:
如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD、等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F,连接DF.
求证:四边形ADFE是平行四边形.
答案
证明:在Rt△ABC,∠BAC=30°,
∴∠ABC=60°,
等边△ABE中,∠ABE=60°,且AB=BE,
∵EF⊥AB,
∴∠EFB=90°,
∴Rt△ABC≌Rt△EBF,
∴AC=EF,
又在等边△ACD中,∠DAC=60°,AD=AC,
又∵∠BAC=30°,
∴∠DAF=90°,
∴AD∥EF,
又∵AC=EF,∴AD=EF,
∴四边形ADFE是平行四边形.
证明:在Rt△ABC,∠BAC=30°,
∴∠ABC=60°,
等边△ABE中,∠ABE=60°,且AB=BE,
∵EF⊥AB,
∴∠EFB=90°,
∴Rt△ABC≌Rt△EBF,
∴AC=EF,
又在等边△ACD中,∠DAC=60°,AD=AC,
又∵∠BAC=30°,
∴∠DAF=90°,
∴AD∥EF,
又∵AC=EF,∴AD=EF,
∴四边形ADFE是平行四边形.
考点梳理
考点
分析
点评
专题
平行四边形的判定;全等三角形的判定与性质;等边三角形的性质.
根据已知首先判定Rt△ABC≌Rt△EBF,得出AC=EF,进而求出AD∥EF,以及AD=EF,利用一组对边平行且相等的四边形是平行四边形,问题得证.
此题主要考查了平行四边形的判定以及全等三角形的判定与性质,熟练掌握平行四边形的判定从而发现AD∥EF是解题关键.
证明题;压轴题.
找相似题
(2013·牡丹江)如图,四边形ABCD中,AB=CD,对角线AC,BD相交于点O,AE⊥BD于点E,CF⊥BD于点F,连接AF,CE,若DE=BF,则下列结论:①CF=AE;②OE=OF;③四边形ABCD是平行四边形;④图中共有四对全等三角形.其中正确结论的个数是( )
(2013·荆门)四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:
①AD∥BC;②AD=BC;③OA=OC;④OB=OD
从中任选两个条件,能使四边形ABCD为平行四边形的选法有( )
(2011·张家界)顺次连接任意四边形四边中点所得的四边形一定是( )
(2010·绍兴)如图,已知△ABC,分别以A,C为圆心,BC,AB长为半径画弧,两弧在直线BC上方交于点D,连接AD,CD,则有( )
(2009·威海)如图,在四边形ABCD中,E是BC边的中点,连接DE并延长,交AB的延长线于F点,AB=BF.添加一个条件,使四边形ABCD是平行四边形.你认为下面四个条件中可选择的是( )