试题
题目:
如图,D、E、F分别是△ABC的边AB、BC、CA的中点,则图中共有
3
3
个平行四边形.
答案
3
解:有3个平行四边形,有平行四边形ADEF,平行四边形CFDE,平行四边形BEFD,
理由是:∵D、E、F分别是△ABC的边AB、BC、CA的中点,
∴EF∥AB,DF∥BC,
∴四边形BEFD是平行四边形,
同理四边形ADEF是平行四边形,四边形CFDE是平行四边形,
故答案为:3.
考点梳理
考点
分析
点评
专题
平行四边形的判定;三角形中位线定理.
根据三角形的中位线定理得出EF∥AB,DF∥BC,DE∥AC,根据有两组对边分别平行的四边形是平行四边形推出即可.
本题考查了平行四边形的判定和三角形的中位线的应用,关键是推出EF∥AB,DF∥BC,DE∥AC,主要考查学生运用定理进行推理的能力.
证明题.
找相似题
(2013·牡丹江)如图,四边形ABCD中,AB=CD,对角线AC,BD相交于点O,AE⊥BD于点E,CF⊥BD于点F,连接AF,CE,若DE=BF,则下列结论:①CF=AE;②OE=OF;③四边形ABCD是平行四边形;④图中共有四对全等三角形.其中正确结论的个数是( )
(2013·荆门)四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:
①AD∥BC;②AD=BC;③OA=OC;④OB=OD
从中任选两个条件,能使四边形ABCD为平行四边形的选法有( )
(2011·张家界)顺次连接任意四边形四边中点所得的四边形一定是( )
(2010·绍兴)如图,已知△ABC,分别以A,C为圆心,BC,AB长为半径画弧,两弧在直线BC上方交于点D,连接AD,CD,则有( )
(2009·威海)如图,在四边形ABCD中,E是BC边的中点,连接DE并延长,交AB的延长线于F点,AB=BF.添加一个条件,使四边形ABCD是平行四边形.你认为下面四个条件中可选择的是( )